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Abstract

We present a simple graphical framework to illustrate the potential welfare gains from a “top-up”
health insurance policy requiring patients to pay the incremental price for more expensive
treatment options. We apply this framework to breast cancer treatments, where lumpectomy with
radiation therapy is more expensive than mastectomy but generates similar average health
benefits. We estimate the relative demand for lumpectomy using variation in distance to the
nearest radiation facility, and estimate that the “top-up” policy increases social welfare by $700-
2,500 per patient relative to two common alternatives. We briefly discuss additional tradeoffs that
arise from an ex-ante perspective.

1 Introduction

Medical expenditures in the United States are high and increasing. Policy and academic
discussions of strategies to reduce health care spending have largely focused on increasing
cost sensitivity either on the demand side through consumer cost-sharing, or on the provider
side by making providers the residual claimant on cost savings. A natural economic solution
which has not received as much attention is a “top-up” design in which health insurance
contracts would cover the cost of a baseline treatment, and patients could choose to pay the
incremental cost of more expensive treatments out of pocket.

This type of “top-up” design contrasts with the standard “full coverage” insurance design
that is typical in the United States, where consumers face essentially no incremental cost of
choosing a more expensive treatment (other than perhaps some minimal consumer cost-
sharing). Other high-income countries have taken an alternative approach: individual
medical treatments deemed “cost-effective” are fully covered, and treatments deemed not to
be cost effective are not covered at all. In the United Kingdom, for example, the National
Institute for Health and Care Excellence (NICE) determines which medical technologies will
be covered by the National Health Service (NHS), using — in recent years — a threshold of
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around $50,000 per quality-adjusted year of life saved (McCabe, Claxton and Culyer, 2008).
This threshold rule results in the NHS not covering some medical treatments. For example,
in 2010 NICE refused coverage for the drug Avastin as a treatment for metastatic colorectal
cancer on the basis that the drug improved average life expectancy by only six weeks
(relative to the preexisting standard of care) at a cost of around $115,000 per quality-
adjusted year of life saved.l As a result, patients in the UK who want to choose a treatment
like Avastin must pay the full cost of that treatment. Such UK-style “no top-up” designs
have recently been introduced in Australia, France, and Germany (Chalkidou and Anderson,
2009), and received a great deal of negative publicity in the US under the name of “death
panels” during the debate over the 2010 Affordable Care Act.2

Relative to either the US “full coverage” or the UK “no top up” regimes, a “top-up” design
provides a natural middle ground. In a “top-up” setting, individuals are allowed coverage of
the more expensive treatment, but are required to pay out of pocket the incremental cost
(relative to the fully covered baseline treatment). By making patients internalize treatment
costs on the margin, such a top-up design would result in more efficient sorting of patients
across treatments. Conceptually, this simple point is not new. It has been made in other
contexts, such as public subsidies for education (Peltzman, 1973), pricing of employer-
provided health insurance plans (Enthoven and Kronick, 1989), public health insurance
subsidies (Cutler and Gruber, 1996; Gans and King, 2003; Baicker, Shephard and Skinner,
2012), and incentives for patients to see specific providers within health insurance plans
(Robinson and MacPherson, 2012). Closest in spirit to our paper is the work of Chernew,
Encinosa and Hirth (2000), who theoretically explore the optimal “top up” insurance
coverage for different treatments of a given disease, and quantitatively illustrate the
implications of their model by calibrating the key parameter values in the context of a binary
treatment choice facing prostate cancer patients.

In this paper, we make two contributions to this line of work. First, we present a simple
graphical framework that illustrates the welfare consequences of alternative insurance
designs for reimbursement of different treatment choices. This simple framework helps
visualize the key points made by the previous literature, and at the same time highlights the
relative demand curve for the more expensive treatment as (arguably) the key underlying
economic object of interest. As we show, knowledge of the relative demand curve is critical
to any attempt to assess the welfare consequences of alternative policy designs. Our second,
perhaps more important, contribution is to estimate this demand curve, and quantify the
resultant welfare effects of alternative policy designs in the specific context of treatment
choices among breast cancer patients.

Most patients diagnosed with breast cancer receive surgery as an initial course of treatment.
The key treatment choice is between two types of surgery: mastectomy, which removes the
cancerous breast, and lumpectomy, which removes the tumor while preserving the breast

1see http://www.nice.org.uk/media/E58/E7/2010182BevacizumabForColorectalCancerFinalGuidance.pdf and the discussion in
Chandra, Jena and Skinner (2011).

Such negative publicity notwithstanding, Pollack (2014) describes some groups of US medical specialists (in particular, for
cardiology and oncology) who are recommending that costs be taken into account when developing medical guidelines; insurance
companies often use medical guidelines to determine reimbursement policies.
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and is generally followed by a course of radiation therapy. While evidence from randomized
clinical trials has suggested no average difference in survival between mastectomy relative
to lumpectomy with radiation (Fisher et al., 1985), mastectomy tends to be considerably less
expensive (Polsky et al., 2003).

Public and private insurance in the US typically covers the costs of both treatments fully (or
nearly fully) so that patients do not internalize the difference in treatment costs. In principle
(if not in practice), under comparative effectiveness regulations — where the goal is stated as
covering the lowest-cost option attaining the best health outcome (Chandra, Jena and
Skinner, 2011) — mastectomy would therefore be covered by insurance whereas lumpectomy
with radiation would not. Because the latter is a more costly treatment with no evidence of
superior average health outcomes, patients choosing it would face the full cost of the
treatment.3 In contrast, a top-up policy in this context is analogous to an indemnity
insurance policy that pays out if a patient is diagnosed with breast cancer, at a fixed sum
equal to the cost of a mastectomy.

The key empirical object needed to evaluate the welfare consequences of these three
insurance designs is the (relative) willingness to pay curve for the more expensive treatment
option, which in this case is lumpectomy. We make a (standard) revealed preference
assumption, and use the demand curve for welfare analysis. Because we know of no useful
variation in the relative price for lumpectomy, we estimate this demand curve using
variation across patients in the distance between their residence at the time of diagnosis and
the nearest radiation clinic. A standard course of post-lumpectomy radiation therapy requires
25 round-trips to a radiation facility, spread over 5 weeks. Our key economic assumptions
are that travel time can be monetized and that preferences for reduction in travel time are
analogous to preferences for any other equivalent price difference. These assumptions allow
us to use the variation in distance to the radiation facility as if it were variation in the
relative price of lumpectomy, thus identifying the demand curve.

We analyze administrative cancer registry data on the characteristics and treatment choices
of over 300,000 breast cancer patients initially diagnosed in California between 1997 and
2009, linked to data on the location of radiation treatment facilities over the same time
period. Building on similar results in the medical literature (Schroen et al., 2005), we
document that women living further away from radiation facilities at the time of their breast
cancer diagnosis are more likely to choose mastectomies rather than lumpectomies. Our key
econometric assumption is that there are not omitted patient characteristics correlated with
both distance and demand for lumpectomy.# We observe a rich set of patient demographic
and clinical characteristics and find that while some of these variables vary with distance,
the magnitude of the relationship between treatment choice and travel time is not very
sensitive to their inclusion. Our baseline estimates imply that a 10 minute increase in one-

3AIthough the comparative effectiveness literature recognizes that health benefits may be heterogeneous, in principle (if not in
practice) that limitation could be solved by randomized clinical trials that are sufficiently powered to detect such heterogeneity. Such
approaches could not however, even in principle, address heterogeneity in preferences over non-health aspects of treatment. Recent
work in social insurance has emphasized the potential importance of heterogeneous preferences both conceptually (Feldstein, 1995)
and empirically (Einav, Finkelstein and Schrimpf, 2010).

The use of distance between patients and providers as identifying variation for health care treatment is reasonably common, and dates
back in the health economics literature at least to the work of McClellan, McNeil and Newhouse (1994).
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way travel time (approximately two-thirds of a standard deviation in our data) reduces the
probability of a lumpectomy by about 0.7 to 1.1 percentage points, relative to a baseline
lumpectomy rate of about 58 percent.

We then use the estimated demand curve to illustrate how the welfare effects of alternative
insurance designs can be quantified, albeit highly out of sample relative to our observed
variation in the implied price. We estimate, for example, that the efficient “top-up” policy —
in which patients pay $10,000 on the margin for a lumpectomy — increases the lumpectomy
rate by 15-25 percentage points relative to the UK-style “no top-up” regime, and decreases
the lumpectomy rate by 35-40 percentage points relative to the US-style “full coverage”
regime. Our estimates suggest total welfare gains from the “top-up” policy of between $700
and $1,800 per patient relative to a “no top-up” UK-style policy and between $700 and
$2,500 per patient relative to a “full coverage” US-style policy.

The preceding welfare analysis considers the (ex post) efficiency of treatment choice under
different insurance designs. In the final section of the paper, we briefly consider the
additional tradeoffs faced when the welfare analysis is done from an ex-ante perspective,
thus accounting for differential risk exposure across regimes. Qualitatively, the top-up
policy continues to dominate the UK-style no top-up policy, but the relative ranking of the
top-up policy and the US-style full coverage policy is now ambiguous. We present a simple
and highly stylized calibration which shows that, for high enough levels of risk aversion, ex-
ante welfare can be higher under a US-style full coverage policy than under a top-up policy
that produces the ex-post efficient treatment decisions. This exercise is conceptually quite
similar to that performed by Chernew, Encinosa and Hirth (2000) for prostate cancer, except
that in our case the key input to this exercise — the relative demand curve for lumpectomy —
is estimated rather than assumed.

In addition to offering a tractable source of empirical variation with which to estimate the
relative demand for different treatments, the breast cancer context presents two useful,
simplifying features from an analytic perspective. First, this context focuses attention on a
binary treatment choice, which cleanly maps to the graphical framework we present.
Second, the fact that average survival does not differ across the two treatments allows us to
focus on the difference in treatment costs and to abstract from any attempt to monetize
quality adjusted years of life. However, it is important to note that the same qualitative
analysis could be done for other treatments, including those with differences in health
benefits. We conclude the paper by briefly discussing how one could carry out a similar type
of analysis in other settings, including contexts in which the more expensive treatment
provides incremental average health benefits or other attributes valued by the social planner,
as long as the social planner is willing and able to attribute a given monetized value to these
other benefits.>

The paper is organized as follows. Section 2 details our empirical setting — treatments for
breast cancer — and describes our data. Section 3 outlines our conceptual framework, and
describes our empirical strategy. Section 4 presents our main results. Section 5 briefly

5The UK’s NICE/NHS policy discussed above provides one example of how health benefits may be monetized in practice.
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discusses implications for ex-ante welfare. Section 6 concludes by discussing how one could
carry out a similar type of analysis in other settings.

2 Setting and data

2.1 Treatment choices for breast cancer

Our analysis is focused on the treatment choice made by breast cancer patients.6 Most
patients diagnosed with breast cancer have surgery to attempt to remove the cancer from the
breast; in our data, 95 percent of women diagnosed with breast cancer receive surgery as an
initial course of treatment. For women receiving surgery, the key treatment choice is
between two alternatives, lumpectomy and mastectomy. Lumpectomies are breast-
conserving surgeries that remove the cancer but not the breast itself, and are generally
followed by a course of radiation therapy. Mastectomies, in contrast, remove the entire
cancerous breast and are generally not followed by a course of radiation therapy. Other
forms of treatment such as chemotherapy are commonly administered either before or after
(or both) either type of surgery.

In terms of clinical effectiveness, the key comparative evidence on these treatments comes
from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B06 clinical trial,
which enrolled women with stage | and stage Il breast tumors. The initial results of this trial
were released in 1985 (Fisher et al., 1985), with subsequent follow-up results (with longer-
term mortality outcomes) published in 1989 (Fisher et al., 1989), 1995 (Fisher et al., 1995),
and 2002 (Fisher et al., 2002). The results of this clinical trial suggested there were no
detectable differences in survival outcomes across random assignment to more invasive
(total mastectomy) versus less invasive (lumpectomy with or without radiation therapy)
treatments.’

In terms of overall financial costs (shared by both patients and insurers), there is a consensus
that lumpectomy with radiation is more expensive than mastectomy. Mastectomy is cheaper
primarily because of the add-on cost of the radiation therapy which accompanies
lumpectomies. A common argument is that the more relevant costs are not those associated
with the initial course of treatment, but rather the total, subsequent “lifetime” costs over the
following years. While comparing these longer-run costs of the two treatments is more
difficult due to various selection concerns — for example, co-morbidities that vary with
treatment choice — the evidence on lifetime costs also strongly suggests that mastectomy is
cheaper, even after attempting to correct for potential selection bias. For example, Polsky et
al. (2003) compare five-year total Medicare payments across Medicare patients with breast
cancer receiving lumpectomy relative to mastectomy: the unadjusted difference between
mastectomy and lumpectomy was $8,389 (relative to a baseline of $40,130 for mastectomy),
the risk-adjusted difference was $13,775 (relative to a baseline of $38,623 for mastectomy),
and the propensity score-adjusted difference was $14,054 (relative to a baseline of $38,664).

6Many of the clinical details in this section are drawn from the National Cancer Institute’s guide to the treatment of breast cancer; see
http://www.cancer.gov/cancertopics/pdg/treatment/breast/Patient/.
These trials have also not uncovered evidence of a difference in disease-free survival (which measures recurrence of the cancer).
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8 In all three versions of their analysis, the 95-percent confidence intervals can reject cost
differences smaller than $4,500.9

An additional difference in cost between the two treatments, which our empirical exercise
will focus on, is the time cost of traveling to receive post-surgery radiation therapy
associated with lumpectomy.10 A standard course of radiation therapy requires 25
treatments spread over 5 weeks.11 Motivated by this substantial time commitment required
for radiation therapy, several papers in the medical literature have explored whether women
living further away from radiation facilities are more likely to choose to have mastectomies
rather than lumpectomies with radiation. For example, Schroen et al. (2005) use data from
the Virginia cancer registry from 1996-2000 (~20,000 patients) and document that the
probability of patients choosing mastectomy increases with distance from the radiation
facility: in their full sample, 43% of women choose mastectomy if they live within 10 miles
of a radiation facility, whereas among women living more than 50 miles from a radiation
facility the share is 58%.12 Our empirical work will build on this medical literature by
confirming a relationship between distance from radiation facilities and treatment choice in
a much larger sample of over 300,000 patients in California, and using this variation to
estimate a demand curve for lumpectomy. This estimated demand curve will in turn be the
key input into policy counterfactual exercises investigating how patients might respond to
changes in the financial costs of treatments induced by different health insurance contract
designs.

2.2 Data

Our empirical analysis uses two datasets from the state of California: a patient-level cancer
registry dataset, and data on radiation treatment facility locations.

8t is worth noting that the relative costs of mastectomy and lumpectomy have changed somewhat over time as post-mastectomy
breast reconstruction surgery has become more common. At the start of our data in the mid-1990s, which roughly matches the timing
of the data used by Polsky et al. (2003) (which includes women diagnosed with cancer between 1992-1994), the share of breast cancer
patients receiving early or immediate breast reconstruction post-mastectomy has been estimated to be around 8 percent (Morrow et al.,
2001). A study of California patients near the time period at the end of our sample documented that post-mastectomy breast
reconstruction rates were less than 30 percent (Kruper et al., 2011). While some lumpectomy patients also receive post-lumpectomy
breast reconstruction surgery, in general this trend towards increasing rates of post-mastectomy breast reconstruction has likely pushed
the relative prices of mastectomy and lumpectomy closer together over the time period of our data. Unfortunately, we are unaware of a
study like the Polsky et al. (2003) that has formally compared the total costs of the two procedures in more recent data. An informal
survey of costs for post-mastectomy breast reconstruction suggested a range of $5,000-$10,000, which — scaled by the roughly 20
percentage point change in the share of women receiving post-mastectomy breast reconstruction over the time period of our data —
seems too small to substantively change the ballpark cost differentials that we consider in our counterfactuals later in this paper.

In our illustrative quantitative welfare analyses below, we assume that the higher payments for lumpectomy relative to mastectomy
reflect differences in underlying resource costs (i.e. social marginal cost). To the extent that prices paid are distorted relative to social
marginal costs, our results below would naturally need to be adjusted.

While our cancer registry data offers an incomplete set of information on cancer treatments, as observed in our data more than 60
percent of patients choosing lumpectomy receive radiation therapy during their initial course of treatment, compared to less than 20
percent of mastectomy patients. As one point of comparison, 38 percent of women choosing mastectomy also receive chemotherapy in
our data, as do 25 percent of women choosing lumpectomy. Differences in radiation therapy as well as other cancer treatments such as
chemotherapy will both be captured in the total cost estimates cited above.

See this US National Cancer Institute Cancer Bulletin from 2010: http://www.cancer.gov/aboutnci/ncicancerbulletin/archive/
2010/022310/page2.
12Nattinger et al. (2001) and Celaya et al. (2006) document similar patterns in the SEER cancer registry (1991-1992, ~17,000
patients) and the New Hampshire cancer registry data (1998-2000, ~3,000 patients), respectively. Athas et al. (2000) investigate this
relationship in the New Mexico tumor registry data (1994-1995, ~1,000 patients) and do not find evidence of a similar relationship,
although they do find that the probability of receiving radiation post-lumpectomy falls with distance from a radiation facility.
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Our patient-level data is drawn from the California Cancer Registry (CCR), a program of the
California Department of Public Health. The CCR was established in 1985, and every cancer
diagnosis made in California from 1988 forward is required by law to be reported to the
CCR.13 Data are collected directly from cancer patients’ medical records at the time of the
cancer diagnosis, rather than by interviewing patients. Available variables in the CCR
research database include demographic covariates such as age, race, and sex; diagnostic
information such as cancer type and stage of disease; and treatment information on the first
course of treatment received by the patient (if any). A key advantage of the CCR research
database relative to other cancer registry databases such as the SEER cancer registry is that
the CCR data include patients’ exact address of residence at the time of diagnosis, which
enables our empirical analysis to rely on a more precise measure of how far patients live
from radiation treatment facilities than would be possible if we only observed county of
residence, as is available in the SEER data.

Our data on radiation treatment facility locations comes from the private firm IMV. IMV
aims to identify all hospital and non-hospital sites in the US performing radiation therapy,
and queries these sites with a telephone survey. The sampling frame for the telephone survey
is constructed from several sources, including federal and state nuclear licensing lists.14 We
obtained data on the full sampling frame of California sites, including exact street address
for all institutions, for all available survey years (1996 to 2011).15 Because survey response
rates vary across years (ranging from 45 to 87 percent), we use all institutions in the
sampling frame as our set of facilities of interest, regardless of whether the institution
responded to the survey.

We restrict the CCR data to female breast cancer patients diagnosed between 1997 and
2009, which covers all years after the first IMV survey (1996) and until the last year of the
CCR cancer registry data (2009). Following sample restrictions used in National Cancer
Institute analyses of breast cancer registry data (Gloeckler Ries and Eisner, 2007), we
exclude cases identified through autopsy and death certificate only (<0.5% of observations),
and cases where the age at diagnosis was less than 20 (<0.1% of observations). Given our
empirical strategy, we also limit the sample to patients with non-missing data on treatment
(<0.3% of observations) and non-missing data on residence at the time of diagnosis (<0.2%
of observations).

For ease of presentation, because our primary analysis is focused on the choice between
lumpectomy and mastectomy, we also omit from the baseline sample the 5.8 percent of the
cases in which the patient chose neither of these two surgical treatments. Our results are not

135ee http://www.ccrcal.org/pdf/Reports/Physicians.pdf for more details on these reporting requirements, which fall under California
Health and Safety Code 103885.

Specifically, IMV reports that it identifies candidate sites from nuclear licensing lists compiled by the Nuclear Regulatory
Commission, lists from state licensing agencies, the American Hospital Association Guide to the Health Care Field database, internal
IMV lists, previous IMV data collections, and internal IMV internet research. Because many radiation facilities are based at non-
hospital sites, the IMV data are preferable to relying solely on hospital-based datasets such as the American Hospital Association
annual survey data. The IMV data have been used in several previous papers, such as Baker (2001), Baker and Atlas (2004), and
Baker, Atlas and Afendulis (2008).

Surveys are conducted approximately every one to two years over this time period. Specifically, IMV’s data collection periods are
1996 (covering 2/96 to 1/97), 1998 (covering 3/98 to 9/98), 2000 (covering 3/00 to 10/00), 2001 (covering 11/01 to 7/02), 2003
(covering 11/02 to 1/04), 2004 (covering 8/04 to 12/05), 2006/08 (covering 9/06 to 10/08), and 2010/11 (covering 12/09 to 11/11).
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sensitive to this sample selection, and the appendix presents analogous results for the full
sample (Appendix Table A.1).

Finally, combining these two datasets, for each patient we computed (using Google Maps in
summer of 2012) the distance between her residence at the time of diagnosis and the nearest
facility offering radiation treatment as recorded in the IMV sampling frame as of January 1st
in the year of diagnosis. Our baseline analysis uses driving time, while the appendix reports
results that are based on driving distance and spherical distance; our results are not sensitive
to the choice of distance measure (see Appendix Figures A.1 and A.2, and Appendix Tables
A.2 and A.3).

To summarize, our baseline sample covers 323,612 breast cancer patients that were
diagnosed between 1997 and 2009 and chose either mastectomy or lumpectomy as their
initial treatment, with each patient matched to her nearest radiation facility.

3 Conceptual framework and empirical strategy

Consider a woman i recently diagnosed with breast cancer, facing a binary choice between
receiving a mastectomy (M) or receiving a lumpectomy together with radiation therapy (L).
The key input into the analysis of the welfare effect of alternative reimbursement policies in
our revealed preference-based approach is the relative valuation (or willingness to pay) for
L, given by

Vi=Yp —VYins (1)
and its distribution across cancer patients, which is given by the cumulative distribution
function F(v;). That is, our main empirical object of interest can be summarized by the
demand curve for lumpectomy, which is illustrated in Figure 1, and is given by F~1(.).
Variation in the relative valuation of L across patients may reflect heterogeneity in relative
health benefits, or heterogeneity in relative valuation of non-health attributes of the two
treatments, or both.

Abstracting from income effects, this demand curve F~1(.) is sufficient to evaluate the
welfare effects of alternative policy structures. Note that our discussion of welfare and
efficiency here refers to efficiency of treatment choice, or ex-post efficiency, a point we
return to in Section 5. With that in mind, the efficient policy is to cover both treatments, but
to require cancer patients to incur the incremental costs associated with lumpectomy. We
denote this policy by “top-up” in Figure 1, which denotes the incremental (social) cost of L
by ¢, and the incremental price the patient faces for L by p. The top-up policy sets p = c. The
resultant allocation, point E in Figure 1, occurs when F~1(-) = c. Since patients internalize
the social marginal cost of treatment, the allocation is efficient; all patients whose
incremental willingness to pay for lumpectomy (v;) is above the social marginal cost of the
lumpectomy (c) would choose it, and all those for whom v; < ¢ would not.

The US-style “full coverage” policy is given by point D in Figure 1; cancer patients can
choose between M and L and do not face any of the incremental financial cost associated
with L (p = 0). Because lumpectomy is more expensive than mastectomy, this policy

Am Econ J Econ Policy. Author manuscript; available in PMC 2016 February 18.
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produces inefficient treatment decisions. A set of cancer patients whose relative valuation
for L is lower than c inefficiently choose L because they do not pay the cost c (paid by the
insurer) associated with it. This welfare loss is summarized in Figure 1 by the triangle CDE.

Finally, we consider a third possible policy (denoted “No top-up” in Figure 1) in which the
insurance policy covers only the choice of the cheaper treatment M. In this situation, cancer
patients may still choose L, but if they do so will have to pay its entire cost out of pocket. As
detailed in the introduction, the UK uses this type of “no top-up” insurance regime, and
other high-income countries have been moving towards similar frameworks. In our setting,
such a “no top-up” policy would cover the patient’s full cost of mastectomy, but would not
reimburse any costs if the patient chooses lumpectomy. This would lead to a welfare loss
that is summarized in Figure 1 by triangle ABE: a set of cancer patients who prefer
lumpectomy would opt into mastectomy in order to avoid the financial cost, despite the fact
that vj > ¢, thus implying that a choice of L would have been socially efficient. This is
analogous to the classic welfare analyses of requiring individuals who opt out of the public
schools to pay the full cost of private schooling (Peltzman, 1973) or requiring individuals
who opt out of public insurance to pay the full cost of private insurance (Cutler and Gruber,
1996).

In the rest of the paper we explore these tradeoffs quantitatively. Figure 1 makes clear that

the key empirical object for welfare analysis is the demand curve for lumpectomy (relative

to mastectomy). The demand curve is derived from vj, individuals’ incremental willingness
to pay for L. Our empirical strategy is therefore focused on estimating this demand curve.

Estimation of the demand curve requires identifying variation in the relative price of
lumpectomy. Motivated by the medical literature discussed in Section 2.1, which has
documented an empirical relationship between distance from radiation facilities and breast
cancer treatment choices, we use variation across patients in the distance to the nearest
radiation facility in order to estimate the demand curve. Specifically, we normalize patient
i’s utility from mastectomy to zero and assume that her (relative) utility from lumpectomy is
given by

u; = o — Bi(0:idi+p), ()

where q; and B are the (potentially patient-specific) preference parameters, d; is the distance
of patient i to the nearest radiation facility, and p is the incremental price she would need to
pay for lumpectomy (relative to mastectomy). Distance is denominated in miles or travel
hours while price is denominated in dollars, so the parameter 0; captures the opportunity cost
of time, and thus serves as a simple conversion factor that allows us to monetize distance/
time. The patient would choose lumpectomy if and only if u; > 0. From the econometrician’s
perspective, we obtain

Pr(Lumpectomy)=Pr(u;>0). (3)

An important assumption in this specification, and one that is crucial for our empirical
strategy, is that 6; can be calibrated using external information so that, conditional on 6;,
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price and (monetized) distance have the same effect on individual utility. This assumption
allows us to estimate the distribution of a; and f; in the data using variation in distance only,
but then use the estimated distributions to assess the impact of counterfactual policy designs
that change price. Because the out-of-pocket price from either treatment is effectively zero
in our California data, this assumption or the choice of 0; does not affect estimation; it only
becomes relevant in the counterfactual exercises. To see this, replace p = 0 in equation (2),

and define 3;=3,6;, to obtain

U = a; — 5;-611'7 4

which has a familiar form. We assume that a; =27 %+, and that ;== +«” and that &;
follows a type | extreme value distribution. These assumptions lend themselves to a standard

logit regression when u’fzo and to a random-coefficient logit model otherwise.

4.1 Summary statistics and initial evidence

Table 1 presents some summary statistics for the baseline sample. We aggregate the detailed
treatment information in the cancer registry data into indicator variables for whether the
patient received a lumpectomy or a mastectomy as their initial course of treatment: 58% of
women receive lumpectomy and 42% receive mastectomy.16 A standard course of radiation
consists of 25 round trips. Patients would need, on average, to drive eight miles (11 minutes)
each way to the nearest radiation facility. However, there is a fair amount of variation along
this dimension, with many patients living within a few minutes of a facility, while others
would be required to drive more than half an hour each way for each treatment.

An attraction of our data is the availability of a relatively rich set of covariates measuring
patient demographics and clinical characteristics. Specifically, we observe patient age, race,
marital status, and some information on type of insurance coverage. While the data lack
individual-level measures of co-variates such as income or educational attainment, the
cancer registry data matches on these and other characteristics at the census-block level. In
terms of clinical covariates measuring cancer severity, we observe data on the two primary
measures of the extent of the disease at the time of diagnosis which are used by physicians
to guide patient treatment decisions: stage and grade. In situ corresponds to an early stage
(sometimes called “pre-cancer”), and local, regional, and remote correspond to increasing
extents of disease.1” Grade is an alternative measure of the extent of disease at the time of
diagnosis, with higher values corresponding to increasing extents of disease.18

Table 2 splits the sample by above and below median travel time from a radiation facility.
Women who live further from a radiation facility are more likely to receive mastectomies
and less likely to receive lumpectomies. However, as in Schroen et al. (2005) and other

16Only the initial course of treatment is recorded in the cancer registry data. Our coding of lumpectomy and mastectomy follows
Roetzheim et al. (2008).

For more details, see the SEER training website: http://training.seer.cancer.gov/ss2k/staging/review.html.

For more details, see the SEER instructions for coding grade: http://seer.cancer.gov/tools/grade/.
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previous work, women closer to and further from radiation facilities also appear to differ on
observable characteristics. In terms of demographic characteristics, women living closer to
radiation facilities tend to be older, less likely to be white, less likely to be married, and
more likely to have Medicaid as a primary payment source.19 In terms of neighborhood
characteristics, women living closer to radiation facilities tend to live in slightly poorer
neighborhoods (as measured by income), but also in areas with slightly higher median home
values. In terms of clinical characteristics, the above- and below-median distance samples
appear relatively more balanced on stage and grade of disease: while several of the
differences in grade indicators are statistically significant, no clear pattern emerges in terms
of one group being in “better” health in terms of cancer progression at the time of diagnosis.
Overall, Table 2 provides preliminary support for the idea that distance may affect treatment
choices among breast cancer patients, but also highlights the need to examine the robustness
of this relationship to conditioning on demographic, neighborhood, and clinical
characteristics, as distance to radiation facility is clearly correlated with other patient
characteristics which may themselves affect treatment choice.

To explore how travel distance to a radiation facility affects the treatment choice of breast
cancer patients in our sample, Figure 2(a) plots the probability of mastectomy and the
probability of lumpectomy by travel time to the nearest radiation facility. The histogram in
light gray displays the number of observations (patients) in each travel time bin in our
sample. These raw data on treatment choices display the expected pattern: women who live
further from radiation facilities are more likely to receive mastectomies and less likely to
receive lumpectomies.

Figure 2(b) investigates whether this relationship between distance and treatment choice can
be explained by the differences in demographic or health characteristics of the patients that
we saw in Table 2. It presents a series of plots which residualize the y-axis (lumpectomy) for
various covariates; to retain comparability with Figure 2(a) we do not residualize the x-axis
(distance), but our regression specifications below which condition out these covariates
paint a similar picture. The first line (dashed and square denoted) presents the de-meaned
lumpectomy rates for each travel time bin as a point of comparison. The other two lines
show the residualized lumpectomy estimates after sequentially adding more covariates. The
second line (solid and triangle denoted) conditions out patient characteristics, and the third
(dashed and circle denoted) adds neighborhood-level covariates and clinical characteristics.
Consistent with what we will document in the regression specifications below, Figure 2(b)
suggests that the overall relationship between treatment choice and travel time is not very
sensitive to the inclusion of these covariates.

4.2 Treatment choices by distance

Table 3 quantifies the treatment-distance relationship, estimating different specifications of
the logit regression in equation (4). For ease of interpretation, Table 3 reports our estimate of
the average marginal effect on lumpectomy probability of a ten-minute increase in (one
way) travel time, with bootstrapped standard errors clustered at the county level (50

19The california cancer registry data also includes information on non-Medicaid payment sources: around 16% of women are covered
by Medicaid, 26% by Medicare, 56% by private payers, and the small remainder (<2%) self-pay or other sources.
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iterations); recall from Table 1 that this ten-minute increment is about two-thirds of a
standard deviation of travel time in our sample. We also report the standard deviation of this
effect across patients. In the appendix, we report the parameter estimates (and their standard
errors) that give rise to these average marginal effects (see Appendix Table A.4).

Column (1) of Table 3 reports the simplest specification, where we estimate a logit model of
whether the patient chose lumpectomy on travel time with no controls. Using the notation of
Section 3, column (1) assumes that neither a; nor B; are affected by any patient-specific
variables. Columns (2), (3), and (4) retain the same (homogenous logit) assumption for f;
but increasingly add covariates that shift a;, thus affecting the mean utility from
lumpectomy. In column (5) we also allow these observables to change B by adding
interaction terms between these covariates and distance. Finally, column (6) reports results
from a specification that allows random coefficients on distance: it assumes that f3; follows a

lognormal distribution, thus relaxing the assumption of ufzo that is assumed in all other
specifications.

The effect of distance is statistically significant and is quantitatively reasonably stable across
all specifications, as would be expected given the patterns we documented in Figure 2. The
specification of column (6) leads to the largest effect, but this estimate is quite noisy (as the
estimated parameters that govern the distribution of the random coefficient are imprecisely
estimated; see Table A.4). Overall, we find that having the nearest radiation facility ten
minutes further from the patient’s residence makes her less likely to choose lumpectomy by
about 0.7 to 1.1 percentage points (or about 1.2 to 1.9 percent relative to the mean
lumpectomy probability of 58 percent). Observable characteristics do not appear to have an
important effect on this distance estimate, as can be seen from the fact that the heterogeneity
in this estimate does not change much in column (5) relative to the preceding columns.

Taken together, these estimates suggest a reasonably robust relationship between the
distance from womens’ place of residence at the time of their diagnosis with breast cancer to
the nearest radiation treatment facility, and their choice of cancer treatments. In the
appendix, we show that these basic results are robust to a variety of alternative
specifications, including alternative (mileage-based rather than time-based) measures of
distance (Appendix Figures A.1 and A.2, and Appendix Tables A.2 and A.3), non-linear
parameterizations of distance (Appendix Table A.5), and estimation with linear probability
models (Appendix Table A.6). In the next section, we build on these estimates to use this
distance measure as a shifter in the effective relative price women face for breast cancer
treatments in order to investigate how breast cancer patients would respond to various (out
of sample) policy counterfactuals.

4.3 Policy counterfactuals: estimating treatment choices and ex-post welfare

Following the conceptual framework depicted in Figure 1, our estimated demand curve for
lumpectomy allows us to perform quantitative exercises of the impact of alternative
insurance designs which vary the price the consumer faces for L. .To see what the exercise
is, one can think of each demand specification as estimating a distribution of the willingness
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to pay for lumpectomy. To do so, we can use equation (2), which defines patient i’s
willingness to pay for lumpectomy to be

Q;

B

v = — —0id;, (5)

and, as before, denote the estimated demand by the distribution F(v;). A given demand
specification provides estimates for the joint distribution of a; and f;, and d; is observed. We
assume throughout this section that 6; is equal to $1,150 for all patients. To arrive at this
estimate for 0;, we rely on the fact (see Section 2.1) that a typical course of radiation therapy
treatment involves 25 round trips to the radiation facility, and that the average hourly wage
as reported by the Bureau of Labor Statistics is just over 23 dollars (so 23 - 25 - 2 = $1, 150).
20 Of course, one could (and should) raise plausible concerns that the opportunity cost of
time may be heterogeneous across patients, or that the opportunity cost of time of a breast
cancer patient may be higher or lower than that of a healthy working individual .21
Fortunately, the transformation is sufficiently simple and transparent that one could fairly
easily use our results to obtain quantitative estimates that rely on alternative values of 6;.

Equipped with an estimate of F(v;) and given an (incremental) price of lumpectomy p
defined by the insurance design, the share of patients choosing lumpectomy is given by 1 -
F(p) and consumer surplus (per patient, relative to everyone being forced to choose
mastectomy) is given by (1 — F(p))E(vilv; > p). The total incremental cost is given by (1 -

F(p)c.

Figure 3 illustrates the nature of this exercise. In Figure 3(a) we plot the implied demand
system for lumpectomy using the simplest specification - column 1 of Table 3 - and in
Figure 3(b) we plot the implied demand system for lumpectomy using our richest
specification - column (6) of Table 3. These figures are the empirical analogs to our
conceptual Figure 1, and we indicate the analogous points along them. We also use Figure 3
to illustrate the variation (in distance) used to estimate the demand function by plotting the
empirical distribution of the monetized distance (that is, distance in hours multiplied by 6 =
$1, 150), illustrating the point we emphasized in the introduction: our key counterfactual
exercises are quite far out of sample, and therefore should be treated with caution. For this
illustrative purpose, we use the information discussed in Section 2.1 to approximate the
incremental cost of lumpectomy (c) at $10,000 and the total cost of lumpectomy at $50,000,
which is the incremental cost together with the baseline cost of $40,000 for mastectomy.

Figure 3(a) is based on specification (1) of Table 3, which does not include any controls.
This specification indicates that the US-style “full coverage” policy (given by point D) in
which consumers do not pay on the margin for lumpectomy raises the lumpectomy rate by
about 37 percentage points relative to the efficient level (given by point E) of about 21

ZOSpecificaIIy, this Bureau of Labor Statistics figure is for average hourly earnings in October 2012: http://www.bls.gov/news.release/

empsit.t19.htm.

For example, two recent papers (Gowrisankaran, Nevo and Town, 2015; Ho and Pakes, 2014) estimate the relationship between
distance and patients’ hospital choice. Unlike us, each of these papers has available a separate source of variation in price, and hence
can compare the distance and price coefficients. Their results suggest much more important distance effects than the 23 dollars per
hour benchmark we assume, although of course distance may play a very different role for a “one time” hospital visit than for a
repeated trip to a radiation facility for a “routine” course of radiation.
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percent; the associated welfare cost is about $2,000 per patient relative to the efficient
allocation. Figure 3(b) is instead based on the richest model (column (6) of Table 3), which
allows heterogeneity in the response to price and thus make the demand curvature much
greater, leading to more elastic demand for small price changes but to a much lower
elasticity for large changes. This specification suggests that the US-style “full coverage”
policy raises the lumpectomy rate by only about 10 percentage points relative to the efficient
level of 48 percent, with a resultant welfare cost of about $710 per patient.

Likewise, the estimates without controls in Figure 3(a) suggest that a UK-style “no top-up”
policy (given by point A) in which insurance only covers mastectomies and patients must
pay the full cost of a lumpectomy reduces the lumpectomy rate from about 21 percent under
the efficient top-up policy to nearly zero, and reduces welfare by about $1,400 per patient,
relative to the efficient outcome. When we use the richest model, Figure 3(b), however, a
large fraction of the patients are estimated to be not very price sensitive, so lumpectomy
rates fall by only about 4.5 percentage points from the efficient level of 48 percent, with a
welfare cost of about $800 per patient relative to the efficient level.

For completeness, Table 4 reports additional estimates for a variety of counterfactuals for
each of the six demand specifications reported in Table 3. The top panel reports the
observed outcome (for p = 0), which corresponds to our US-style full coverage benchmark.
Each of the subsequent panels report a set of estimates for a different (counterfactual) price
for lumpectomy (retaining a zero price for mastectomy). The first row of each panel reports
the demand response; that is, the reduction in lumpectomy share (relative to the observed
level) from the increase in price. The second row of each panel reports the (per patient)
reduction in consumer surplus (relative to the observed level). The change in surplus
consists of two components: a set of “marginal” patients change their choice to mastectomy
as a result of the price change, and their change in consumer surplus is given by integrating
under this portion of the demand curve; and a set of “inframarginal” patients, who have high
willingness to pay for lumpectomy, do not change their choices, but now face a higher price
which reduces their surplus. The third row of each panel uses a cost of $10,000 for the
incremental costs of lumpectomy to report the change in insurer profit, which consist of not
paying for lumpectomies for the “marginal” patients and (except for the case of mandate)
from charging an incremental price for lumpectomies from the “inframarginal” patients.
Finally, the fourth row of each panel reports the overall change in welfare by adding up the
change in consumer surplus and the change in insurer profits. We chose the counterfactuals
to illustrate price changes of $5,000 as a figure that is close to the lower 95% confidence
interval of cost differences from Polsky et al. (2003), and is a smaller change that is less out
of sample; $10,000 as a figure that is close to the midpoint of the cost difference range from
Polsky et al. (2003); and $50,000 as a figure that is close to the “full” (no top-up) cost based
on the figures from Polsky et al. (2003).

5 Ex ante efficiency

Our analysis thus far has focused on the impact of alternative insurance designs for the (ex-
post) efficiency of treatment choice, taking as given the extent of the patient’s risk exposure.
We would be remiss, however, to analyze the welfare consequences of insurance designs
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without considering their impact on risk exposure and hence ex-ante utility. We briefly do so
here.

5.1 A simple calibration

The different insurance designs have different implications for ex-ante risk exposure,
making the qualitative ranking of ex-ante efficiency between the US policy and the top-up
policy a priori ambiguous. This is because the “top up” policy — which produces the (ex-
post) efficient treatment decision — leaves the consumer exposed to risk ex ante. To see this,
note that under a “top up” policy in which individuals can pay on the margin for L, risk
exposure is increasing in v; (up to c).

To evaluate ex-ante utility of a given individual, the key empirical object will once again be
the individual’s willingness to pay for lumpectomy relative to mastectomy v;, which we
assume is known to the individual at the beginning of the coverage year. In addition, we
assume individuals are expected-utility maximizers with CARA utility w(x) = —exp(-rx)
with a (homogeneous) coefficient of absolute risk aversion r, and (homogeneous) annual
probability of illness p. Assuming mastectomy is fully covered and the lumpectomy out-of-
pocket price is p, the individual is faced with a risk of losing min(p, v;) with probability p.
She will either choose lumpectomy and face a financial risk of p, or choose mastectomy and
incur a monetized risk of v;, whichever is smaller.

The individual’s ex-ante utility is given by (the negative of) mj, which is the solution to: w(x
- 1) = (1 = p)W(X) + pw(x — min(p, vi)). For v; > 022 this yields:

1
m:;log[p -exp(r - min(v;;p))+1 — p)].  (6)

The price p depends on the insurance design.

We can now consider the ex-ante utility properties of the three policies we have explored so
far. The “full coverage” (US) policy sets p = 0; it removes ex-ante risk exposure (w; = 0) and
maximizes consumer surplus (—m;) but, as discussed, produces ex-post socially inefficient
treatment choices. Under the “top up” policy p = ¢, and although, as shown, it produces ex-
post efficient treatment choices, equation (6) indicates that it leaves the individual exposed
to ex-ante risk (m; > 0). The “no top up” UK policy sets p = TC, the total cost of L; it
therefore not only produces ex-post inefficient treatment choices but also exposes the
individual to ex-ante risk. Moreover, since TC > ¢ — by definition the total cost of L is
greater than the incremental cost — it is clear from equation (6) that consumer surplus is
lower (m; is higher) under the UK policy than the top-up policy. The higher social welfare
ranking of the top-up policy relative to the UK policy is thus preserved when ex-ante utility
is considered. The relative social welfare ranking of the US policy and the top-up policy is a
priori unclear as is the relative ranking of the US and UK policies; all else equal, the US
policy’s relative ranking is increasing in risk aversion r.

22pgr vj < 0 the individual will always choose M and be fully insured under any of the insurance arrangements we consider.
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To quantitatively assess ex-ante social welfare under the alternative insurance designs,
equation (6) makes clear that in addition to the demand curve F(v;) that we have already
estimated, we also need values for the risk of breast cancer (p) and the coefficient of
absolute risk aversion (r). Table 5 reports the results from an illustrative calibration exercise.
We assume a homogeneous annual risk of breast cancer for a 60 year old female of p =
0.48%.23 We calibrate r based on a range of estimates reported in Table 6 of Cohen and
Einav (2007). We use the estimates of F(v;) from the simplest empirical specification
reported in column (1) of Table 3.

Table 5 reports the results. The three different panels (A through C) report results for three
different assumptions regarding r. Column (1) reports the results for the “full coverage”
(US) policy. Row 1 (in all three panels) reports the share of breast cancer patients choosing
L, which under the US policy is simply the share of patients with v; > 0 and does not depend
on the level of risk aversion. The other rows of column (1) are normalized to zero, as we use
the US policy as a benchmark against which we measure the effects of other policies.

Column (2) of Table 5 reports the results for the “no top up” (UK) policy. The share of L
(again shown in row 1 of each panel) drops almost to zero once patients are required to pay
the total cost of $50,000. This leads to insurer cost savings of $50,000 for the small share of
people who still choose L, and $10,000 for anyone who previously chose L but now chooses
M (multiplied by the probability of breast cancer, p); row 2 in each panel indicates that this
results in insurer costs savings of $5,443. The no top up policy, however, exposes patients to
risk, and their utility loss depends on their level of risk aversion, which varies across the
panels in the table. Row 3 in each panel reports the loss in consumer surplus relative to full
coverage; we measure this by the change in mj, as defined in equation (6). Note that this loss
in consumer surplus is associated with all individuals in the population, not only with those
who are subsequently diagnosed with breast cancer, so even a small magnitude of « could be
magnified once it affects the entire population of potential breast cancer patients. Naturally
the reduction in consumer surplus is increasing in risk aversion r. Finally, row 4 in each
panel reports the total social cost relative to full coverage, by adding up the corresponding
reduction in consumer surplus relative to full coverage (row 3) and the corresponding social
cost relative to full coverage (row 2). The results indicate that despite the cost saving
associated with the UK “no top up” policy, the increased risk exposure is much greater, so
overall it appears that in this setting the US “full coverage” policy dominates even for mild
level of risk aversion.

Column (3) of Table 5 reports the results for the (ex-post) efficient top-up policy. The share
of L is significantly lower (0.35 relative to 0.53) once patients are required to pay $10,000
for L, but many patients still choose to do so. The insurer cost savings are similar to those in
the UK policy because under the top-up policy it is the patient who pays for the incremental
costs. Interestingly, the results indicate that the (total) efficiency ranking of the top-up policy
relative to the US-style full coverage policy (row 4) depends on risk aversion. For the lowest

231n our California cancer registry data in 2000, there were 585 60-year-old females diagnosed with breast cancer. Dividing this
number by the total population of 60-year-old females in California as of 1-July 1999 (120,668; http://www.census.gov/popest/data/
state/asrh/1990s/tables/st-99-10.txt) gives p = 0.48%.
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value of risk aversion we consider, social welfare is higher under the top-up policy, but for
higher values of risk aversion it is higher under the US-style full coverage policy. This
illustrative analysis suggests that focusing solely on ex-post efficiency could miss an
important part of the picture, and that the ex-ante risk exposure generated by top-up policies
could be much more costly than the allocative efficiencies these policies may provide.

5.2 Additional potential insurance designs

Since the top-up policy does not necessarily dominate the full coverage policy from an ex-
ante perspective, it is interesting to consider other potential insurance contract designs. The
“first-best” policy naturally creates no ex-ante risk exposure and achieves the ex-post
efficient treatment choice. This could be implemented by offering a continuum of indemnity
insurance policies x € (0, c], which, in the event of illness, cover mastectomy costs and pay
each patient a lump sum of x, and then allow individuals to pay the incremental cost of L out
of pocket. In a competitive equilibrium a policy that pays x would be priced at px and will be
bought by individuals with willingness to pay v; = x for x < c and by individuals with
willingness to pay v; = ¢ for x = ¢, leaving individuals unexposed to risk. Such a policy
would eliminate both ex-ante and ex-post efficiency losses. From an ex-post perspective,
patients would obtain the lump sum, but only those patients with v; > ¢ would choose
lumpectomy, thus replicating the treatment efficiency generated by the previous “top up”
policy. From an ex-ante perspective, individuals would be fully insured and would not be
exposed to any risk, which is the efficient outcome (assuming, as is typical, that the
insurance provider is risk neutral). In row 4 of column (4) of Table 5, we report the gains in
social costs associated with this policy (relative to the full coverage policy).

The first best is likely not practical. Typical insurance markets offer discrete rather than
continuous coverage, and coverage tends to be in the form of payment for treatment options,
rather than lump sum cash transfers. One might naturally consider therefore the possibility
of a competitive insurance market that would offer coverage for the social incremental cost
of L in the event of illness. As shown in column (5) of Table 5, this setting improves over
the full coverage US policy for all the risk aversion levels we consider, but does not achieve
the first best. To see why, note that any individual with v; > ¢ would purchase the policy,
face no ex-ante risk exposure and make efficient ex-post treatment decisions. However,
some individuals with v; < ¢ (but sufficiently close to c) would also purchase the insurance
to avoid financial risk, and would therefore (inefficiently) choose L ex-post.

In principle, one way to come even closer to the first best within a “practical” setting would
be to offer only partial “top up” coverage, and to search for the efficiency maximizing cost-
sharing level of L. Yet, once coverage for L is incomplete, a familiar problem of adverse
selection would arise in which demand for the partial “top up” coverage would be increasing
in v;. This is not an issue when “top up” coverage is full; in this setting, all 53% of patients
with v; > 0 who are potential consumers of top-up coverage would choose L with such
coverage. Therefore, in the language of Einav, Finkelstein and Cullen (2010) — the “average
cost” curve in the market is flat, and adverse selection is not a problem. However, when top-
up coverage is incomplete, we would have adverse selection in our calibrated setting; a
higher price for partial top up coverage would increase the average v; of those who bought it
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and thus the set of people who use it ex-post to purchase lumpectomy; in other words, the
average cost curve would be downward sloping. Quantitatively, however, adverse selection
is relatively less important in this specific exercise: 35 percent of patients would always
purchase the policy (since they have v; > c), while 47 percent would never do so (because vj
< 0), so the potential change in average composition of top-up insurance buyers in terms of
their propensity to choose L ex post is limited by the fact that only 18 percent of the
population has 0 < v; < ¢. This makes the efficiency cost of adverse selection in this setting
less important, and echoes recent empirical findings in the context of health insurance
(Einav, Finkelstein and Cullen, 2010; Bundorf, Levin and Mahoney, 2012). Of course, this
calibration exercise is extremely stylized, and evaluating this trade-off more systematically
would require, among other things, better estimates of r and p — as well as potential
heterogeneity in them and selection on them — for our population.

6 Conclusion

We present a simple framework to illustrate the welfare gains from a health insurance policy
that allows patients to pay the incremental price for more expensive treatment options. Such
a policy efficiently sorts low willingness-to-pay patients to the cheaper treatment option, in
contrast with the current status quo in the US where the incentives for such sorting are
minimal. At the same time, this policy does not “over price” the more expensive treatment,
as is common in the UK and several other high-income countries; UK-style policies allocate
too many patients to the less expensive treatment. Our analysis of the choice between
lumpectomy and mastectomy for breast cancer patients provides an empirical illustration as
to how such a top-up policy could be evaluated, and what the quantitative welfare gains to
such a policy might be.

Most of our analysis focused on analyzing the (ex-post) efficiency of treatment choices,
taking the overall level of risk exposure as given. In the last section of the paper, we also
briefly discuss ex-ante efficiency, noting that the top-up policy — unlike a US-style “full
coverage” policy — exposes the individual to ex-ante risk exposure. A stylized calibration
exercise shows that for high enough levels of risk aversion social efficiency can be higher
under a US-style “full coverage” policy than a top-up policy since the gains from reduction
in risk exposure can outweigh the loss from ex-post inefficient treatment choices.

Our empirical analysis in this paper focuses on a particular setting of two breast cancer
treatments, one of which is more costly with no evidence of superior average mortality
outcomes. As noted in the introduction of the paper, we chose this setting primarily for the
empirical traction it provides for estimating demand for alternative treatments. One
noteworthy feature of this breast cancer application is that it considers two forms of
treatment that differ in cost, and over which individual consumers may have different
preferences, but which do not differ in terms of expected outcomes to which the social
planner is assumed to attach weight. Such a tradeoff may not be common, but it is not
unique to our setting. Consider, for example, the recent controversy around Sanofi’s new
cancer drug Zaltrap, which was approved by the US Food and Drug Administration in
August 2012 to treat metastatic colorectal cancer, and was priced at around $11,000 per
month. In October 2012, a group of doctors at Memorial Sloan-Kettering Cancer Center
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announced in a New York Times editorial that Memorial Sloan-Kettering would exclude
Zaltrap from its formulary because, they argued, there was no evidence that Zaltrap
improved survival relative to an alternative treatment (Avastin), which costs about half as
much (Bach et al., 2012).24

More importantly, while our empirical analysis of breast cancer assumes there is no
incremental benefit to the more expensive treatment that is valued by the social planner, it is
straightforward to apply the type of analysis we have done to settings in which the
incremental value to society of an alternative treatment for a disease is judged to be less than
the incremental cost, even when that incremental value is positive. Instead of considering
alternative reimbursement schemes for more expensive treatment options with zero
incremental social value (e.g. no top-up in the UK, or the type of top-up policy we have
analyzed in this paper), one could instead simply analyze alternative (presumably
subsidized) reimbursement structures for more expensive treatment options whose
incremental social value relative to their incremental cost was judged to be below some
socially-determined threshold. The analysis would be identical to the analytical set-up
outlined in our paper, except that the social incremental cost would be scaled down by the
monetized incremental social value provided by the more expensive treatment. Key to this
exercise would of course be monetization of the incremental benefits of the more expensive
treatment: in order to apply our empirical strategy, the analyst or the policymaker must agree
on what benefits the alternative treatment provides, and how to monetize their value.

In our context of breast cancer, we focus on a benchmark comparative effectiveness policy
which only accounts for survival benefits. Of course, the policy maker could decide that
other benefits, such as “body integrity” (in the case of breast cancer), should count as well,
and could include the monetized value of these other benefits in the analysis. Such an
extension would be conceptually straightforward. The decision as to which patient outcomes
constitute outcomes that should be internalized by the policy maker, on the other hand, is far
from obvious, and would presumably be guided by politics and subjective normative views
rather than by economics.
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Figure 1. Conceptual framework: Treatment choice
Notes: This figure illustrates conceptually the efficiency consequences of alternative

insurance designs (i.e. prices for lumpectomy (L) relative to mastectomy (M)). The efficient
allocation is given by point E and the “top-up” insurance design under which patients pay
the incremental cost of L relative to M, and fraction Ltop.p choose L. Equilibrium under a
US-style “full coverage” insurance design in which individuals do not pay on the margin for
L relative to M is given by point D, where fraction Ly coverage Choose L. The welfare loss
from this outcome relative to the efficient outcome is given by triangle CDE. Equilibrium
under a UK-style “no top-up” alternative insurance design in which only M is covered by
insurance and patients must pay the total cost for L is given by point A, where Lnq top-up
choose L and the welfare loss relative to the efficient outcome is given by triangle ABE.
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Figure 2. Treatment choice by travel timeto nearest radiation facility
Notes: These figures plot the probability of treatment by travel time in minutes to the nearest

radiation facility, measured from the patients’ address of residence at the time of cancer
diagnosis, for our baseline sample (N=323,612). Panel (2) plots the raw data, and a
histogram of the number of patients by travel time. Panel (b) plots the de-meaned
lumpectomy rate as well as two residualized versions. The first residualizes lumpectomy
probability using patient characteristics. The second adds neighborhood-level covariates
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from the 2000 Census and clinical covariates. All covariates are as described in the notes to
Table 1.
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Figure 3. Empirical analog of conceptual framework: Treatment choice
Notes: These figures represent the empirical analog of Figure 1. The curves plot the implied

demand system for lumpectomy based on: in Panel (a), the estimates in column (1) of Table
3; and in Panel (b), the estimates in column (6) of Table 3. The scatterplots in the lower
right-hand corners of the graphs illustrate the variation (in travel time) used to estimate the
demand function by plotting the empirical distribution of the monetized distance (that is,
distance in hours multiplied by 6 = $1, 150), using the 7 distance “bins” shown in Figure 2;
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this illustrates the point we emphasize in the text: our key counterfactual exercises are quite
far out of sample, and therefore should be taken with caution.
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Table 1

Summary statistics

Mean Std. Dev.  5th Pct.  95th Pct.

Treatment choice:

Lumpectomy 0.579
Mastectomy 0.421
Distance to nearest radiation:
Driving time (minutes) 10.9 14.3 2 32
Driving distance (miles) 7.9 11.6 1.0 24.9
Spherical distance (miles) 5.3 7.8 0.7 17.6
Demographics (at time of diagnosis):
Year of diagnosis 2003.2 3.7 1997 2009
Age 60.8 13.8 40 83
Married 0.570
Medicaid coverage 0.156
Race: Non-Hispanic White 0.692
Race: Hispanic 0.141
Race: Asian or Pacific 0.101
Race: Other 0.066

Census-block characteristics (using 2000 census):

Share below twice poverty line 0.253 0.187 0.041 0.636
Median annual income 58,908 28,525 24,063 110,595
Share with blue collar job 0.108 0.060 0.020 0.213
Share unemployed 0.037 0.029 0.001 0.090
Median monthly rental rate 955.2 404.6 466 1,814
Median home value 266,417 188,861 76,300 660,300
Average years of schooling 13.9 1.3 11.3 15.5

Clinical characteristics (at time of diagnosis):

Cancer Stage:

In Situ 0.182
Local 0.533
Regional spread 0.264
Remote spread 0.017
Tumor grade:
1 0.190
2 0.379
3 0.278
4 0.047

Notes: This table displays the mean and - for non-binary variables - the standard deviation, 5th percentile, and 95th percentile in our baseline
sample (N=323,612). Distance is one-way distance. Our demographic covariates are year of diagnosis (here continuous; indicator variables in our
analyses, with 1997 as the omitted year); age (here continuous; indicator variables in our analyses for below 40, 40-44, 45-49, 50-54, 55-59, 60—
64, 65-69, 70-74, 75-79, and above 80, with below 40 as the omitted group); marital status indicators (married; other/missing is omitted in our
analyses); a Medicaid coverage indicator (=1 if Medicaid covered part of the primary source of payment to the hospital); and race/ethnicity
indicators (non-Hispanic White, Hispanic, and Asian or Pacific; other/missing is omitted in our analyses). Our census block characteristics are
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drawn from the 2000 census: percent of population within the census block group that is at or below 200% of the poverty line; median household
income within the census block group; proportion of those 16 years of age or over within the census block group with a blue collar job; proportion
of those 16 years of age or over within the census block group in the labor force that are unemployed; median gross rent of renter occupied houses
within the census block group; median gross home value of owner occupied houses within the census block group; and average years of schooling
in the census tract. Our clinical characteristics are two measures of the extent of disease at the time of diagnosis: indicators for cancer stage (in situ,
localized, regional, and remote; missing stage is omitted in our analyses), and indicators for cancer grade (1, 2, 3, and 4; missing grade is omitted in
our analyses).
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Table 2

Summary statistics by above and below median travel time

Mean
P-val
Above median distance  Below median distance
Treatment choice:
Lumpectomy 0.569 0.588 0.000
Mastectomy 0.431 0.412 0.000
Distance to nearest radiation:

Driving time (minutes) 174 44 0.000

Driving distance (miles) 13.2 2.6 0.000

Spherical distance (miles) 8.8 1.9 0.000

Demographics (at time of diagnosis):

Year of diagnosis 2003.2 2003.1 0.000

Age 60.5 61.1 0.000

Married 0.608 0.533 0.000

Medicaid coverage 0.150 0.163 0.000

Race: Non-Hispanic White 0.724 0.660 0.000

Race: Hispanic 0.128 0.155 0.000

Race: Asian or Pacific 0.088 0.114 0.000

Race: Other 0.060 0.071 0.000

Census-block characteristics (using 2000 census):

Share below twice poverty line 24.004 26.613 0.000

Median annual income 60,245 57,572 0.000

Share with blue collar job 0.111 0.104 0.000

Share unemployed 0.037 0.037 0.007

Median monthly rental rate 952.6 957.9 0.000

Median home value 253,002 279,832 0.000

Average years of schooling 14.0 13.9 0.000

Clinical characteristics (at time of diagnosis):

Cancer Stage: 0.183 0.182 0.386
In Situ 0.533 0.533 0.981
Local 0.263 0.265 0.388
Regional spread 0.017 0.017 0.573
Remote spread 0.183 0.182 0.386

Tumor grade:

1 0.195 0.186 0.000
2 0.376 0.382 0.000
3 0.273 0.284 0.000
4 0.048 0.046 0.068

Page 30

Notes: This table splits our baseline sample (N=323,612) by above and below median distance from a radiation facility, presents the mean for each
sub-sample, and presents the p-value from a test for a difference between these means (with unadjusted standard errors). All covariates are as

described in the notes to Table 1.
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